拥有一处岛居豪宅,意味着什么?新闻中心中国常州网 常州第一门户网 常州龙网 常州日报 常州晚报
steht für die Menge der ganzen Zahlen

Die ganzen Zahlen (auch Ganzzahlen, lateinisch numeri integri) sind eine Erweiterung der natürlichen Zahlen.
Die ganzen Zahlen umfassen alle Zahlen
- …, ?3, ?2, ?1, 0, 1, 2, 3, …
und enthalten damit alle natürlichen Zahlen sowie deren additive Inverse. Die Menge der ganzen Zahlen wird meist mit dem Buchstaben mit Doppelstrich bezeichnet (das ?Z“ steht für das deutsche Wort ?Zahlen“[1]). Das alternative Symbol ist mittlerweile weniger verbreitet; ein Nachteil dieses Fettdruck-Symbols ist die schwierige handschriftliche Darstellbarkeit. Der Unicode des Zeichens lautet U+2124 und hat die Gestalt ?.
Die obige Aufz?hlung der ganzen Zahlen gibt auch gleichzeitig in aufsteigender Folge deren natürliche Anordnung wieder. Die Zahlentheorie ist der Zweig der Mathematik, der sich mit Eigenschaften der ganzen Zahlen besch?ftigt.
Die Repr?sentation ganzer Zahlen im Computer erfolgt üblicherweise durch den Datentyp Integer.
Die ganzen Zahlen werden im Mathematikunterricht üblicherweise in der fünften bis siebten Klasse eingeführt.
Eigenschaften
[Bearbeiten | Quelltext bearbeiten]Ring
[Bearbeiten | Quelltext bearbeiten]Die ganzen Zahlen bilden einen Ring bezüglich der Addition und der Multiplikation, d. h., sie k?nnen ohne Einschr?nkung addiert, subtrahiert und multipliziert werden. Dabei gelten Rechenregeln wie das Kommutativgesetz und das Assoziativgesetz für Addition und Multiplikation, au?erdem gelten die Distributivgesetze.
Durch die Existenz der Subtraktion k?nnen lineare Gleichungen der Form
mit natürlichen Zahlen und stets gel?st werden: . Beschr?nkt man auf die Menge der natürlichen Zahlen, dann ist nicht jede solche Gleichung l?sbar.
Abstrakt ausgedrückt hei?t das, die ganzen Zahlen bilden einen kommutativen unit?ren Ring. Das neutrale Element der Addition ist 0, das additiv inverse Element von ist , das neutrale Element der Multiplikation ist 1.
Anordnung
[Bearbeiten | Quelltext bearbeiten]Die Menge der ganzen Zahlen ist total geordnet, in der Reihenfolge
- .
D. h., man kann je zwei ganze Zahlen vergleichen. Man spricht von
positiven | , | nichtnegativen | , | |
negativen | und | nichtpositiven |
ganzen Zahlen. Die Zahl 0 selbst ist weder positiv noch negativ. Diese Ordnung ist vertr?glich mit den Rechenoperationen, d. h.:
- Ist und , dann ist .
- Ist und , dann ist .
Mithilfe der Anordnung lassen sich die Vorzeichenfunktion
und die Betragsfunktion
definieren. Sie h?ngen wie folgt
zusammen.
M?chtigkeit
[Bearbeiten | Quelltext bearbeiten]Wie die Menge der natürlichen Zahlen ist auch die Menge der ganzen Zahlen abz?hlbar.
Die ganzen Zahlen bilden keinen K?rper, denn z. B. ist die Gleichung nicht in l?sbar. Der kleinste K?rper, der enth?lt, sind die rationalen Zahlen .
Euklidischer Ring
[Bearbeiten | Quelltext bearbeiten]Eine wichtige Eigenschaft der ganzen Zahlen ist die Existenz einer Division mit Rest. Aufgrund dieser Eigenschaft gibt es für zwei ganze Zahlen stets einen gr??ten gemeinsamen Teiler, den man mit dem Euklidischen Algorithmus bestimmen kann. In der Mathematik wird als euklidischer Ring bezeichnet. Hieraus folgt auch der Satz von der eindeutigen Primfaktorzerlegung in .
Konstruktion aus den natürlichen Zahlen
[Bearbeiten | Quelltext bearbeiten]Ist die Menge der natürlichen Zahlen gegeben, dann lassen sich die ganzen Zahlen daraus als Zahlbereichserweiterung konstruieren:
Auf der Menge aller Paare natürlicher Zahlen wird folgende ?quivalenzrelation definiert:
- , falls
Die Addition und Multiplikation auf wird definiert durch:
ist nun die Menge aller ?quivalenzklassen.
Die Addition und Multiplikation der Paare induzieren nun wohldefinierte Verknüpfungen auf , mit denen zu einem Ring wird.
Die übliche Ordnung der ganzen Zahlen ist definiert als
- falls .
Jede ?quivalenzklasse hat im Fall einen eindeutigen Repr?sentanten der Form , wobei , und im Fall einen eindeutigen Repr?sentanten der Form , wobei .
Die natürlichen Zahlen lassen sich in den Ring der ganzen Zahlen einbetten, indem die natürliche Zahl auf die durch repr?sentierte ?quivalenzklasse abgebildet wird. üblicherweise werden die natürlichen Zahlen mit ihren Bildern identifiziert und die durch repr?sentierte ?quivalenzklasse wird mit bezeichnet.
Ist eine von verschiedene natürliche Zahl, so wird die durch repr?sentierte ?quivalenzklasse als positive ganze Zahl und die durch repr?sentierte ?quivalenzklasse als negative ganze Zahl bezeichnet.
Diese Konstruktion der ganzen Zahlen aus den natürlichen Zahlen funktioniert auch dann, wenn statt die Menge , also ohne , als Ausgangsmenge genommen wird. Dann ist die natürliche Zahl in der ?quivalenzklasse von und die in der von .
Verwandte Themen
[Bearbeiten | Quelltext bearbeiten]- Eine ?hnliche Konstruktion wie die Konstruktion der ganzen Zahlen aus den natürlichen Zahlen ist allgemein für kommutative Halbgruppen m?glich. In diesem Sinn ist die Grothendieck-Gruppe von .
- Die gau?schen Zahlen und die Eisenstein-Zahlen sind zwei verschiedene Erweiterungen der ganzen Zahlen zu Mengen komplexer Zahlen.
- Die proendliche Vervollst?ndigung der Gruppe der ganzen Zahlen wird gebildet als (projektiver oder) inverser Limes aller endlichen Faktorgruppen von und stellt die Gesamtheit der proendlichen ganzen Zahlen dar. Sie ist unter dem Symbol bekannt.
Weblinks
[Bearbeiten | Quelltext bearbeiten]Einzelnachweise
[Bearbeiten | Quelltext bearbeiten]- ↑ Jeff Miller: Earliest Uses of Symbols of Number Theory. 29. August 2010, abgerufen am 20. September 2010.